精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线轴交于两点,点的坐标为,当变化时,解答下列问题:

)能否出现的情况?说明理由.

)证明过三点的圆在轴上截得的弦长为定值.

【答案】见解析.(见解析

【解析】试题分析:(1)设设,并用根与系数关系表示出,计算的值,根据其不为0可知不能出现的情况;

(2)设圆心E的坐标,并分别表示出其横、纵坐标的值,根据圆E的方程可得过A、B、C 三点的圆在y轴上截得的弦长.

试题解析:)设,则是方程的两根,

所以

所以不能出现的情况.

)过三点的圆的圆心必在线段的垂直平分线上,

设圆心,则,由

,化简得

所以圆的方程为

,得

所以过三点的圆在轴上截得的弦长为

所以过三点的圆在轴上截得的弦长为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.

(1)证明:DB=DC;
(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图放置的边长为2的正三角形沿轴滚动, 设顶点的纵坐标与横坐标的函数关系式是, 有下列结论:

①函数的值域是;②对任意的,都有

③函数是偶函数;④函数单调递增区间为.

其中正确结论的序号是________. (写出所有正确结论的序号)

说明:

“正三角形沿轴滚动”包括沿轴正方向和沿轴负方向滚动. 沿轴正方向滚动指的是先以顶点为中心顺时针旋转, 当顶点落在轴上时, 再以顶点为中心顺时针旋转, 如此继续. 类似地, 正三角形可以沿轴负方向滚动.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若函数处的切线方程为,求的值;

Ⅱ)当时,若不等式恒成立,求的取值范围;

Ⅲ)当时,若方程上总有两个不等的实根, 的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长都是正整数的三角形中,周长是2009的三角形与周长是2012的三角形哪一种的个数多?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.

年龄分组

A项培训成绩优秀人数

B项培训成绩优秀人数

[20,30)

30

18

[30,40)

36

24

[40,50)

12

9

[50,60]

4

3


(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为实数,且,

(I)求方程的解;

(II)若满足,求证:①

(III)在(2)的条件下,求证:由关系式所得到的关于的方程存在,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为线段的中点,为线段上一点.

(1)求证:

(2)求证:平面平面

(3)当平面时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣

(1)若a>0,试判断f(x)在定义域内的单调性;

(2)若f(x)在[1,e]上的最小值为,求实数a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案