(Ⅰ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309277624.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309558709.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309574421.png)
),两式相减得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309589737.png)
,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309605636.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309636637.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232103096521355.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309574421.png)
),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309246361.png)
满足上式,故数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309199415.png)
的通项公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309730436.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309293454.png)
).··········· 4分
在数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309371437.png)
中,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309449567.png)
,知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309371437.png)
是等比数列,首项、公比均为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309995319.png)
,
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309371437.png)
的通项公式.(若列出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310026306.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310042343.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310057339.png)
直接得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310073348.png)
而没有证明扣1分)···· 6分
(Ⅱ)∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232103100881247.png)
①
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232103101041289.png)
②
由①-②,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232103101201193.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310151593.png)
,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310166669.png)
,·························· 8分
不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309527970.png)
即为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232103102131199.png)
,
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310229890.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309511461.png)
)恒成立.··············· 9分
方法一、设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310276951.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309511461.png)
),
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310307344.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310338661.png)
恒成立,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310307344.png)
满足条件;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310369380.png)
时,由二次函数性质知不恒成立;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310400369.png)
时, 由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310416632.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310447435.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310463412.png)
上单调递减,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310478857.png)
恒成立,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310400369.png)
满足条件.
综上所述,实数
λ的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310463412.png)
.··············· 12分
方法二、也即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310556792.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210309511461.png)
)恒成立,·············· 9分
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310603836.png)
.则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232103106191772.png)
,·· 10分
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310634492.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310650800.png)
单调递增且大于0,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310447435.png)
单调递增,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310712425.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310728511.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310806512.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210311009388.png)
,∴实数
λ的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210310463412.png)
.