精英家教网 > 高中数学 > 题目详情

【题目】双曲线E: =1(a>0,b>0)的左、右焦点分别为F1、F2 , P是E坐支上一点,且|PF1|=|F1F2|,直线PF2与圆x2+y2=a2相切,则E的离心率为

【答案】
【解析】解:设直线PF2与圆x2+y2=a2相切于点M, 则|OM|=a,OM⊥PF2
取PF2的中点N,连接NF1
由于|PF1|=|F1F2|=2c,则NF1⊥PF2 , |NP|=|NF2|,
由|NF1|=2|OM|=2a,
则|NP|=2b,
即有|PF2|=4b,
由双曲线的定义可得|PF2|﹣|PF1|=2a,
即4b﹣2c=2a,即2b=c+a,
4b2=(c+a)2 , 即4(c2﹣a2)=(c+a)2
4(c﹣a)=c+a,即3c=5a,
则e= =
所以答案是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若为奇函数,求的值;

(2)试判断内的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1、2、3、4、5五个数字中任意取出无重复的3个数字.

(I)可以组成多少个三位数?

(II)可以组成多少个比300大的偶数?

(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,是函数的导函数, 是自然对数的底数.

(1)当时,求导函数的最小值;

(2)若不等式对任意恒成立,求实数的最大值;

(3)若函数存在极大值与极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2cos ,数列{an}中,an=f(n)+f(n+1)(n∈N*),则数列{an}的前100项之和S100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九十年代,政府间气候变化专业委员会(IPCC)提供的一项报告指出:使全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2浓度增加据测,1990年、1991年、1992年大气中的CO2浓度分别比1989年增加了1个可比单位、3个可比单位、6个可比单位。若用函数模拟九十年代中每年CO2浓度增加的可比单位数y与年份增加x的关系,模拟函数可选用二次函数或函数(其中abc为常数)

(Ⅰ)写出这两个函数的解释式;

(Ⅱ)若知1994年大气中的CO2浓度比1989年增加了16个可比单位,请问用以上哪个函数作为模拟函数与1994年的实际数据更接近?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;

(2)估计居民月均用水量的中位数.

查看答案和解析>>

同步练习册答案