精英家教网 > 高中数学 > 题目详情
12.某学校安排3位老师与5名学生去3地参观学习,每地至少去1名老师和1名学生,则不同的安排方法总数为(  )
A.1800B.900C.300D.1440

分析 五名学生去3地参观学习,每地至少1名学生故应先将5名学生分为三组,有两种分法,3,1,1;2,2,1,然后再排列即可得到所有不同的分配方法,计算时先分类再分步.再考虑3位老师去3地参观学习,每地至少去1名老师,有A33=6种,即可得出结论.

解答 解:本题是一个分类计数问题,五名学生去3地参观学习,每地至少1名学生,故应先将5名学生分为三组,有两种分法,3,1,1;2,2,1,
若三组人数分别为3,1,1,则不同的分组法有C53种,故此类中不同的分配方法有C53×A33=60种
若三组人数分别为2,2,1,则不同的分组法有$\frac{1}{2}$×C52×C32=15,故此类中不同的分配方法有15×A33=90种
综上知,不同的分配方法共有60+90=150种,
3位老师去3地参观学习,每地至少去1名老师,有A33=6种
所以不同的安排方法总数为150×6=900种.
故选:B.

点评 本题考查分类、分步计数问题,考查学生分析解决问题的能力,正确分类是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域:
(1)y=log3(4-2x);
(2)y=log${\;}_{\frac{1}{3}}$$\sqrt{3x-5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数y=f(x)的图象经过坐标原点,f(x)<0的解集为(0,$\frac{2}{3}$),数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N+都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{xln(x-2015)}{x-2016}$的零点个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=$\frac{1}{3}{x^3}-f'(-1){x^2}$+x,则[f′(0)+f′(1)]f′(2)=91.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.“若a>1,a2>1”的否命题是“若a>1,a2≤1”
B.{an}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件
C.?x0∈(-∞,0),使${3^{x_0}}<{4^{x_0}}$成立
D.“若$tanα≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线y=3x+1是曲线y=x3-a的一条切线,则实数a的值为-3或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简$(\overrightarrow{AB}-\overrightarrow{BM})+(\overrightarrow{BD}+\overrightarrow{BC})+\overrightarrow{DM}$的结果是$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,A,B,C为三个内角a,b,c为相应的三条边,若$\frac{π}{3}<C<\frac{π}{2}$,且$\frac{b}{a-b}=\frac{sin2C}{sinA-sin2C}$.
(1)求证:A=C;
(2)若|$\overrightarrow{BA}+\overrightarrow{BC}$|=2,试将$\frac{2}{{\overrightarrow{BA}•\overrightarrow{BC}}}$表示成C的函数f(C),并求f(C)值域.

查看答案和解析>>

同步练习册答案