精英家教网 > 高中数学 > 题目详情
(文)已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是
 

考点:三垂线定理
专题:计算题,空间位置关系与距离
分析:由已知中何体的三视图及图中标出的尺寸,可得这个几何体是一个底面半径为1,高为2的圆锥,代入圆锥体积公式即可得到答案.
解答: 解:由已知中三视图,我们可得该几何体是一个底面半径为1,高为2的圆锥
则圆锥的体积V=
1
3
•S•h=
1
3
π•2=
3

故答案为:
3
点评:本题考查的知识点是由三视图,求体积,其中由三视图分析出几何体的形状及底面半径及高等几何量是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2的周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)设AB是过椭圆E中心的任意弦,P是线段AB的垂直平分线与椭圆E的一个交点,求△APB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
i
j
满足(2
j
-
i
i
,则
i
j
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为1,M为AC的中点,P在线段DM上,则(AP+BP)2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列7个判断:
①若f(x)=x2-2ax在[1,+∞)上增函数,则a=1;②函数f(x)=2x-x2只有两个零点;
③函数y=ln(x2+1)的值域是R;④函数y=2|x|的最小值是1;⑤在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称;⑥设a>1,log0.2a、0.2aa0.2的大小关系为log0.2a<0.2aa0.2;⑦设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关为U=R;
其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a2+a3=3,a18+a19+a20=87,则该数列前20项的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①“若a<b<0,则a2>ab>b2
②命题“a、b都是偶数,则a+b是偶数”的逆否命题是“a+b不是偶数,则a、b都不是偶数”;
③若有命题p:7≥7,q:ln2>0,则p且q是真命题;
④命题:“若x2-x-2≠0,则x≠-1且x≠2”的否命题是若x2-x-2=0,则x=-1或x=2.其中真命题有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①若2b=a+c,则a,b,c成等差数列;
②若b2=ac,则a,b,c成等比数列;
③若{an}为等差数列,则数列{2an}为等比数列;
④常数列既是等比数列,又是等差数列.
其中,正确说法的是
 
 (把你认为正确的条件序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数a、b、c,给出下列命题,其中真命题的是(  )
A、“a=b”是“ac=bc”的充要条件
B、“a+
5
是无理数”是“a是无理数”的充要条件
C、“a>b”是“a2>b2”的充分条件
D、“a<5”是“a<3”的必要条件

查看答案和解析>>

同步练习册答案