精英家教网 > 高中数学 > 题目详情

【题目】某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位: mm )绘成频率分布直方图如图所示:

(Ⅰ)求该批零件样本尺寸的平均数 x 和样本方差 (同一组中的数据用该组区间的中点值作代表);

(Ⅱ)若该批零件尺寸 服从正态分布 ,其中 近似为样本平均数 近似为样本方差 ,利用该正态分布求

(Ⅲ)若从生产线中任取一零件,测量尺寸为30mm,根据 原则判断该生产线是否正常?

附: ;若 .

【答案】(1)75;110.

(2)0.8185.

(3) 该生产线工作不正常.

【解析】试题分析:

()由题意结合频率分布直方图计算可得该批零件样本尺寸的平均数,样本方差.

()由(Ⅰ)知,,则正态分布的对称轴为,结合正态分布图象的对称性和准则可得 .

()由题意可知,而故该生产线工作不正常.

试题解析:

.

Ⅱ)由(Ⅰ)知,.

从而

.

.

,小概率事件发生了,

∴该生产线工作不正常.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱BCF﹣ADE的侧面CFED与ABFE都是边长为1的正方形,M、N两点分别在AF和CE上,且AM=EN.
(1)求证:平面ABCD⊥平面ADE;
(2)求证:MN∥平面BCF;
(3)若点N为EC的中点,点P为EF上的动点,试求PA+PN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,.将梯形所在的直线旋转一周而形成的曲面所围成的几何体的表面积为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα+cosα=

(1)求sin2α和tan2α的值;

(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(  )
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点P(2,0).

(I)求椭圆C的短轴长与离心率;

( II)(1,0)的直线与椭圆C相交于M、N两点,设MN的中点为T,判断|TP||TM|的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=1-a0a≠1)是定义在(-∞+∞)上的奇函数.

1)求a的值;

2)证明:函数fx)在定义域(-∞+∞)内是增函数;

3)当x∈(01]时,tfx≥2x-2恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案