精英家教网 > 高中数学 > 题目详情
设函数f(x)=xln(ex+1)-
12
x2+3,x∈[-t,t]
(t>0),若函数f(x)的最大值是M,最小值是m,则M+m=
6
6
分析:求导函数,确定函数在[-t,t]上单调增,故有:M=f(x)max=f(t),m=f(x)min=f(-t),由此可求M+m的值.
解答:解:求导函数,可得f'(x)=ln(ex+1)-
x
ex+1
=
1
ex+1
[exln(ex+1)+ln(ex+1)-lnex]
又因为当x∈[-t,t]时,ex+1>1>0,又因为ln(ex+1)-lnex>0,所以f'(x)>0恒成立
故该函数在[-t,t]上单调增,故有:M=f(x)max=f(t),m=f(x)min=f(-t)
∴M+m=f(t)+f(-t)=tln(et+1)-
1
2
t2+3-tln(e-t+1)-
1
2
t2+3=3+3=6
故答案为:6
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

已知函数f(x)=x2-1(x≥1)的图象为 C1,曲线C2与C1关于直线y=x对称。

  (1)求曲线C2的方程y=g(x);

  (2)设函数y=g(x)的定义域为Mxlx2∈ M,且xlx2,求证|g(x1)-g(x2)|<|x1-x2|;

  (3)设AB为曲线C2上任意不同两点,证明直线AB与直线y=x必相交。

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知函数f(x)=x2-1(x≥1)的图象为 C1,曲线C2与C1关于直线y=x对称。

  (1)求曲线C2的方程y=g(x);

  (2)设函数y=g(x)的定义域为Mxlx2∈ M,且xlx2,求证|g(x1)-g(x2)|<|x1-x2|;

  (3)设AB为曲线C2上任意不同两点,证明直线AB与直线y=x必相交。

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0),如果f(x1)=f(x2)(x1≠x2),则f(xl+x2)等于(    )

A.-          B.-                 C.c                  D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省淮北市高三第一次模拟考试文科数学 题型:解答题

.(本题满分13分)设函数,方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求证:数列{)是等差数列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。

 

 

 

查看答案和解析>>

同步练习册答案