精英家教网 > 高中数学 > 题目详情
1.如图所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,点E为AD边上的中点,过点D作DF∥BC交AB于点F,现将此直角梯形沿DF折起,使得A-FD-B为直二面角,如图乙所示.
(1)求证:AB∥平面CEF;
(2)若二面角的余弦值为-$\frac{\sqrt{30}}{10}$,求AF的长.

分析 (Ⅰ)连接BD,FC交于点O,连接OE.由AB∥OE,得到AB∥平面CEF.
(Ⅱ)以F点为原点,FB,FD,FA分别为x,y,z轴建立空间直角
坐标系,设AF长为a,则F(0,0,0),D(0,1,0),C(1,1,0),A(0,0,a),
E(0,$\frac{1}{2}$,$\frac{a}{2}$),$\overrightarrow{FE}=(0,\frac{1}{2},\frac{a}{2}),\overrightarrow{FC}$═(1,1,0). 
求出平面FEC的一个法向量、平面ECD的一个法向量,利用向量的夹角公式求出a,即可求AF的长.

解答 解:(Ⅰ)证明:如图6所示,连接BD,FC交于点O,连接OE.
因为BCDF为正方形,故O为BD中点.
又E为AD中点,故OE为△AED的中位线.  …(3分)
AB∥OE,又OE?平面CEF,AB?平面CEF,
∴AB∥平面CEF. …(5分)

(Ⅱ)解:因为FD与AF,BF都垂直,又由题意知折为直二面角,
故AF与BF亦垂直,
故可以F点为原点,FB,FD,FA分别为x,y,z轴建立空间直角
坐标系,如图7所示.
设AF长为a,则F(0,0,0),D(0,1,0),C(1,1,0),A(0,0,a),
E(0,$\frac{1}{2}$,$\frac{a}{2}$),$\overrightarrow{FE}=(0,\frac{1}{2},\frac{a}{2}),\overrightarrow{FC}$═(1,1,0).  …(7分)
设平面FEC的一个法向量为$\overrightarrow{m}=(x,y,z)$,
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{FE}=\frac{1}{2}y+\frac{a}{2}z=0}\\{\overrightarrow{m}•\overrightarrow{FC}=x+y=0}\end{array}\right.$令y=a,则$\left\{\begin{array}{l}{x=-a}\\{z=-1}\end{array}\right.$∴$\overrightarrow{m}=(-a,a,-1)$.
同理,易求平面ECD的一个法向量$\overrightarrow{n}=(0,a,1)$.       …(10分)
根据题意知,cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{{a}^{2}-1}{\sqrt{2{a}^{2}+1}•\sqrt{{a}^{2}+1}}$=-$\frac{\sqrt{30}}{10}$,
解得,a=$\sqrt{7}$或a=$\frac{1}{2}$,
经分析若a=$\sqrt{7}$时,二面角余弦值应为正,故舍去.
综上,AF=$\frac{1}{2}$.  …(12分)

点评 本题考查了空间线面平行的判定,向量法求二面角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=2,a的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距为$4\sqrt{2}$,短半轴长为2,过点P(-2,1)斜率为1的直线l与椭圆C交于A,B点.
(1)求椭圆C的标准方程;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$与圆${C_2}:{x^2}+{y^2}={c^2}$(c是双曲线的半焦距)相交于第一象限内一点P,又F1,F2分别是双曲线C1的左、右焦点,若$∠P{F_2}{F_1}=\frac{π}{3}$,则双曲线的离心率为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设实数x,y满足不等式组$\left\{\begin{array}{l}{y≥2x}\\{y-x≤1}\\{y≥1}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数列{an}满足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d为常数),则称数列{an}为调和数列,现有一调和数列{bn}满足b1=1,b2=$\frac{1}{2}$.
(1)求{bn}的通项公式;
(2)若数列cn=$\frac{{b}_{n}}{n+2}$,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax-k的图象过点(1,3)和(0,2),则函数f(x)的解析式为f(x)=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》,活动共有四关,设男生闯过一至四关的概率依次是$\frac{5}{6},\frac{4}{5},\frac{3}{4},\frac{2}{3}$,女生闯过一至四关的概率依次是$\frac{4}{5},\frac{3}{4},\frac{2}{3},\frac{1}{2}$.
(1)求男生闯过四关的概率;
(2)设ε表示四人冲关小组闯过四关的人数,求随机变量?的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC,中,AB=2,cosC=$\frac{2\sqrt{7}}{7}$,D是AC上一点,AD=2DC,且cos∠DBC=$\frac{5\sqrt{7}}{14}$.则 $\overrightarrow{AD}$•$\overrightarrow{CB}$=-4.

查看答案和解析>>

同步练习册答案