精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,,点D是AB的中点,

求证:(1); (2)平面

(1)详见解析;(2)详见解析.

解析试题分析:(1)证明两条直线垂直,只需证明直线和平面垂直,由题知,从而,又,从而;(2)证明直线和平面平行,一般有两种方法,其一利用直线和平面平行的判定定理(在平面内找一条直线和已知直线平行);其二利用面面平行的性质(如果两个平面平行,则一个平面内的任意一条直线和另一个平面平行),设,连接,则,从而说明平面.
试题解析:(1)在直三棱柱ABC-A1B1C1中,C1C⊥平面ABC,又由于AC平面ABC,所以CC1⊥AC.
又因为AC⊥BC  BC平面BCC1B1  CC1平面BCC1B1  BC1CC1=C,所以AC⊥平面BCC1B1,又因为BC1平面BCC1B1 所以AC⊥BC1     5分
(2)设BC1B1C=O,连OD,则O为BC1中点,又∵D是AB中点,∴OD是△ABC1的中位线,∴OD∥AC1,又∵OD平面B1CD1, AC1平面B1CD ∴AC1∥平面B1CD               10分
考点:1、证明两条直线垂直的方法;2、直线和平面平行的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是等边三角形,,将沿折叠到的位置,使得

(1)求证:
(2)若分别是,的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.

(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.

(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将棱长为的正方体截去一半(如图甲所示)得到如图乙所示的几何体,点分别是的中点.

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.

(1)求证:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点.

(Ⅰ)求证:AG∥平面PEC;  
(Ⅱ)求点G到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,的中点,分别在线段上,且,把沿折起,如下图所示,

(1)求证:平面
(2)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由.

查看答案和解析>>

同步练习册答案