【题目】已知函数.
(1)讨论函数的单调性;
(2)若,设,,若对任意,恒成立,求实数a的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)分类讨论参数的范围,利用导数求函数单调性即可;
(2)利用导数证明函数与在区间的单调性,利用单调性化简题设条件,构造函数,由函数单调性的定义判断函数为减函数,得出在上恒成立,再次构造函数,分类讨论参数利用导数的范围,利用导数求函数单调性,结合在上恒成立,求出的范围.
(1),令,
①当时,,所以在上单调递增;
②当时,令,,所以在上单调递增,在上单调递减;
③当时,令,,所以在上单调递减,在上单调递增.
(2)
因为,当时,,在单调递减;
,当时,,在单调递减.
因为对任意,
不妨设,则由两函数的单调性可得:,对任意恒成立
令
则对任意恒成立
即在上单调递减
即在上恒成立,令
当时,在恒成立
,G(x)在上单调递减,,满足题意;
当时,G(x)有两个极值点且,
∴在上,G(x)单调递增,即对任意上恒成立,不满足题意,舍去;
综上:当时,不等式在恒成立.
科目:高中数学 来源: 题型:
【题目】已知数列 ,为其前项的和,满足.
(1)求数列的通项公式;
(2)设数列的前项和为,数列的前项和为,求证:当时;
(3)(理)已知当,且时有,其中,求满足的所有的值.
(4)(文)若函数的定义域为,并且,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,直线与椭圆在第一象限内的交点是,且轴,.
(1)求椭圆的方程;
(2)是否存在斜率为的直线与以线段为直径的圆相交于,两点,与椭圆相交于,两点,且?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,,则下面结论正确的是( )
A.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在四棱锥中, 平面,底面是正方形, .
(1)求异面直线与所成角的大小(结果用反三角函数值表示);
(2)求点、分别是棱和的中点,求证: 平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD-A1B1C1D1的顶点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗”爬行的路线是AA1→A1D1→ ,黄“电子狗”爬行的路线是AB→BB1→ ,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”. 已知数列1,2. 第一次“H扩展”后得到1,3,2;第二次“H扩展”后得到1,4,3,5,2; 那么第10次“H扩展”后得到的数列的所有项的和为( )
A.88572B.88575C.29523D.29526
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com