分析:本题考查的是数列与不等式的综合问题.在解答时:
(1)结合函数解析式和递推关系即可探索出数列的特点,再利用等差数列的特点即可求得数列{an}的通项公式;
(2)结合(1)的结论即可获得a2n-1-a2n+1的值,同时通过a2n-1•a2n-a2n•a2n+1的表达即可获得Tn中数列的通项,结合等差数列的知识即可获得问题的解答;
(3)首先利用(1)的结论对bn进行化简,再利用裂项的方法即可获得问题的解答.
解答:解:(1)由题意可知:
an+1=f()===an+,
∴数列{a
n}为以1为首项,以
为公差的等差数列,
所以通向公式为
an=1+(n-1)•=n+,
即:
an=n+,n∈N*;
(2)∵T
n=a
1a
2-a
2a
3+a
3a
4-a
4a
5+…-a
2na
2n+1,结合(1)的结论可知:
a2n-1-a2n+1=-且
a2n-1•a2n-a2n•a2n+1=(+) (-)=-(4n+1),
∴
Tn=-()n=-(2n2+3n),
故:
a2n-1-a2n+1=-,
Tn=-(2n2+3n).
(3)∵
bn==(-)∴
Sn=(-+-+…+-)=
-•(n≥2)∴
Sn=-•(n≥2)∴
Sn<又因为
Sn<对一切n∈N
*成立,
∴
≥?m≥2009故:m的最小值为2009.
点评:本题考查的是数列与不等式的综合问题.在解答的过程当中充分体现了递推公式的知识、等差数列的知识、列项的方法以及恒成立问题的解答规律.值得同学们体会和反思.