精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,且a1=2,an+1=an+3对任意的n∈N+恒成立.
(1)求数列{an}的通项公式;
(2)在平面直角坐标系中,向量
a
=(2,S5),向量
b
=(4k,-S3)若
a
b
,求k值.
分析:(1)变形已知可得an+1-an=3,可得数列{an}是2为首项,3为公差的等差数列,可得通项公式;
(2)由(1)可得Sn,进而可得向量
a
b
的坐标,由
a
b
可得关于可得方程,解之可得结论.
解答:解:(1)∵a1=2,an+1=an+3,
∴an+1-an=3,
故数列{an}是2为首项,d=3为公差的等差数列,
故an=2+3(n-1)=3n-1
(2)由(1)可知a1=2,an=3n-1,
∴Sn=
n(2+3n-1)
2
=
3n2+n
2

a
=(2,S5)=(2,40),
b
=(4k,-S3)=(4k,-15),
a
b
,∴2×(-15)-40×4k=0,
解之可得k=-
3
16
点评:本题考查等差数列的通项公式和求和公式,以及平行向量的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案