精英家教网 > 高中数学 > 题目详情

已知等差数列,公差不为零,,且成等比数列;
⑴求数列的通项公式;
⑵设数列满足,求数列的前项和.

(1) ;(2).

解析试题分析:(1)利用等差数列的通项公式,和等比数列的中项知识.(2)通过裂项法求数列的前n项和.
试题解析:⑴由成等比数列得,,即,
解得,(舍), ,
(2)=.
考点:1.等差数列的通项公式.2.等比中项.3.裂项求和法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列满足:.
(1)求的通项公式;
(2)若(),求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,数列的前项和为,点在曲线,且.
(1)求数列的通项公式;
(2)数列的前项和为,且满足,求数列的通项公式;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,前项和为
(I)求
(Ⅱ)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列项和,数列满足),
(1)求数列的通项公式;
(2)求证:当时,数列为等比数列;
(3)在题(2)的条件下,设数列的前项和为,若数列中只有最小,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项和为Sn,公差d≠0,且成等比数列.
(1)求数列{an}的通项公式;
(2)设是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的各项均为正实数,,若数列满足,其中为正常数,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得当时,恒成立?若存在,求出使结论成立的的取值范围和相应的的最小值;若不存在,请说明理由;
(3)若,设数列对任意的,都有成立,问数列是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列中,成等差数列,
(1)求数列的通项公式;
(2)求数列的前项的和.

查看答案和解析>>

同步练习册答案