【题目】如图,斜三棱柱中,是边长为2的正三角形,为的中点,平面,点在上,,为与的交点,且与平面所成的角为.
(1)求证:平面;
(2)求二面角的正弦值.
【答案】(1)详见解析;(2).
【解析】
(1)连结,证明相似得到,得到证明.
(2)以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.
(1)连结,为的中点,,,
又,,.
又平面,平面,所以平面.
(2)因为是边长为2的正三角形,为的中点,平面,
所以,,,两两垂直,以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.
与平面所成的角为,又∥,与平面所成的角为,
又平面,与平面所成的角为,即.
又是边长为2的正三角形,为的中点,,
由题意知,,,,
所以,,,,
设平面的法向量为,
所以,,即,取,
设平面的法向量为,
由,得,取,
所以,
设二面角的大小为,.
所以二面角的正弦值为.
科目:高中数学 来源: 题型:
【题目】某公司准备设计一个精美的心形巧克力盒子,它是由半圆、半圆和正方形ABCD组成的,且.设计人员想在心形盒子表面上设计一个矩形的标签EFGH,标签的其中两个顶点E,F在AM上,另外两个顶点G,H在CN上(M,N分别是AB,CB的中点).设EF的中点为P,,矩形EFGH的面积为.
(1)写出S关于的函数关系式
(2)当为何值时矩形EFGH的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱中,是边长为2的正三角形,为的中点,平面,点在上,,为与的交点,且与平面所成的角为.
(1)求证:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是某高架桥箱梁的横截面,它由上部路面和下部支撑箱两部分组成.如图2,路面宽度,下部支撑箱CDEF为等腰梯形(),且.为了保证承重能力与稳定性,需下部支撑箱的面积为,高度为2m且,若路面AB.侧边CF和DE,底部EF的造价分别为4a千元/m,5a千元/m,6a千元/m(a为正常数),.
(1)试用θ表示箱梁的总造价y(千元);
(2)试确定cosθ的值,使总造价最低?并求最低总造价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】斜率为的直线过抛物线:的焦点,且与拋物线交于,两点.
(1)设点在笫一象限,过作拋物线的准线的垂线,为垂足,且,求点的坐标;
(2)过且与垂直的直线与圆:交于,两点,若与面积之和为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生物公司将A型病毒疫苗用100只小白鼠进行科研和临床试验,得到统计数据如表:
未感染病毒 | 感染病毒 | 总计 | |
未注射 | 10 | x | A |
注射 | 40 | y | B |
总计 | 50 | 50 | 100 |
现从所有试验的小白鼠中任取一只,取得注射疫苗小白鼠的概率为.
(1)能否有99.9%的把握认为注射此型号疫苗有效?
(2)现从感染病毒的小白鼠中任取3只进行病理分析,记已注射疫苗的小白鼠只数为ξ,求ξ的分布列和数学期望.
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com