精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(Ⅰ)若x=1是函数y=f(x)的一个极值点,求a的值;
(Ⅱ)若函数y=f(x)在区间(-1,0)上是增函数,求实数a的取值范围.

解:(I)∵f(x)=ax3-3x2
∴f'(x)=3ax2-6x=3x(ax-2).
∵x=1是f(x)的一个极值点,
∴f'(1)=0,
∴a=2.
(II)①当a=0时
f(x)=-3x2在区间(-1,0)上是增函数
∴a=0符合题意;
②当a≠0时,f'(x)=3ax(x-),令f'(x)=0得:x1=0,x2=
当a>0时,对任意x∈(-1,0),f'(x)>0,
∴a>0 (符合题意)
当a<0时,当x∈(,0)时f'(x)≥0,
≤-1,∴-2≤a<0(符合题意)
综上所述,a≥-2.
分析:(I)由x=1是函数f(x)的一个极值点则知f'(1)=0,代入导函数即可求a的值;
(II)要求函数f(x)在区间(-1,0)上是增函数,则要求导函数f'(x)在区间(-1,0)大于等于零即可,另外要注意对a的讨论.
点评:本题考查了利用导数研究函数在某点取得极值的条件、函数单调性的性质及证明,其中熟练掌握函数单调性与导函数符号之间的关系是解答本题的关键.另外还有分类讨论的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案