精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lg(1-x)的值域为(-∞,1),则函数f(x)的定义域为(  )
A.[-9,1)B.(-9,1)C.[0,+∞)D.[-9,+∞)

分析 根据函数f(x)的值域,列出不等式lg(1-x)<1,求出解集即可.

解答 解:∵函数f(x)=lg(1-x)的值域为(-∞,1),
即lg(1-x)<1,
∴0<1-x<10,
解得-9<x<1;
∴函数f(x)的定义域是(-9,1).
故选:B.

点评 本题考查了利用函数的值域求定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和为Sn,a2=3,S5=25,正项数列{bn}满足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求数列{an},{bn}的通项公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$对一切正整数n均成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.若p∧q为假命题,则p、q均为假命题
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.与函数f(x)=|x|表示同一函数的是(  )
A.f(x)=$\frac{{x}^{2}}{|x|}$B.f(x)=$\sqrt{{x}^{2}}$C.f(x)=($\sqrt{x}$)2D.f(x)=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知幂函数$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)为偶函数,且在(0,+∞)上是增函数.
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间(2,3)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求函数f(x)=x3-3x+3在区间[-2,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若两个三角形的三条边长分别为a、b、c和lga、lgb、lgc,且a、b、c两两不等,试判断这两个三角形是否相似?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列结论中,正确的是(  )
A.2014cm长的有向线段不可能表示单位向量
B.若0是直线l上的一点,单位长度已选定,则l上有且只有两个点A,B,使得$\overrightarrow{OA}$,$\overrightarrow{OB}$是单位向量
C.方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量
D.一人从A点向东走500米到达B点,则$\overrightarrow{AB}$不能表示这个人从A点到B点的位移

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知函数f(x)=$\frac{1}{2}$x-$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{4}$cosx的图象在点A(x0,f(x0))处的切线斜率为$\frac{1}{2}$,求tanx0的值.
(2)对于正整数n,设曲线y=xn(1-x)在x=2处的切线与y轴交点的纵坐标为an,求数列{$\frac{{a}_{n}}{n+1}$}的前n项和.

查看答案和解析>>

同步练习册答案