精英家教网 > 高中数学 > 题目详情
设f(x)=,若f(x)存在,则常数b的值是(    )

A.O              B.1                 C.-1            D.e

解析:本题考查了学生对函数连续性的认识,从图像上看,图像没有间断的函数是连续函数.

所以ex=1,∴(2x+b)=b,∴b=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=log
1
2
1-ax
x-1
为奇函数,a为常数.
(1)求a的值;
(2)若对于区间[3,4]上的每一个x值,不等式f(x)>(
1
2
)x+m
恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(x+4)=f (x),若-1≤x≤1时,f(x)=x,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若f(x0)=x0,则称x0为f(x)的:“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f[f(x)]=x}.
(1)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅;
(2)设函数f(x)=3x+4,求集合A和B,并分析能否根据(1)(2)中的结论判断A=B恒成立?若能,请给出证明,若不能,请举以反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:
定义(1):设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义(2):设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+ax+2在x=-1处取得极大值.请回答下列问题:
(1)当x∈[0,4]时,求f(x)的最小值和最大值;
(2)求函数f(x)的“拐点”A的坐标,并检验函数f(x)的图象是否关于“拐点”A对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)设f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b为非零实常数.
(1)若f(x)=1-
3
x∈[-
π
3
π
3
]
,求x;
(2)若x∈R,试讨论函数g(x)的奇偶性,并证明你的结论;
(3)已知:对于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),当且仅当x1=x2时,等号成立.若a≥2,求证:函数g(x)在R上是递增函数.

查看答案和解析>>

同步练习册答案