精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x-m|+2x-3(m∈R).
(1)若m=4,求函数y=f(x)在区间[1,5]的值域;
(2)若函数y=f(x)在R上为增函数,求m的取值范围.
(1)f(x)=x|x-4|+2x-3=
x2-2x-3(x≥4)
-x2+6x-3(x<4)

=
(x-1)2-4(x≥4)
-(x-3)2+6(x<4)
(6分)
∵x∈[1,5]
∴f(x)在[1,3]上递增,在[3,4]上递减,在[4,5]上递增.
∵f(1)=2,f(3)=6,f(4)=5,f(5)=12,
∴f(x)的值域为[2,12](10分)
(2)f(x)=x|x-m|+2x-3=
x2-(m-2)x-3(x≥m)
-x2+(m+2)x-3(x<m)

=
(x-
m-2
2
)
2
-3-(
m-2
2
)
2
(x≥m)
-(x-
m+2
2
)
2
-3+(
m+2
2
)
2
(x<m)

因为f(x)在R上为增函数,所以
m-2
2
≤m
m+2
2
≥m
-2≤m≤2.(15分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知f(x)=x+
1
x
-2(x<0),则f(x)有(  )
A.最大值为0B.最小值为0C.最大值为-4D.最小值为-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f:N*→N*,f(x)是定义在正整数集上的增函数,且f(f(k))=3k,则f(2012)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)为R上的减函数,则满足f(|1-
1
x
|)<f(1)
的实数x的取值范围是(  )
A.(-∞,
1
2
)
B.(-∞,0)∪(0,
1
2
)
C.(-
1
2
,+∞)
D.(-
1
2
,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
(a,b∈R).
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间[-k,k],且x∈[-k,0]时,h(x)=f(x),求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)的定义域为D,f(x)满足下面两个条件,则称f(x)为闭函数.
①f(x)在D内是单调函数;
②存在[a,b]⊆D,f(x)在[a,b]上的值域为[a,b].
如果f(x)=
2x+1
+k
为闭函数,那么k的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
x2+1,x≤0
1,x>0
,若f(x-4)>f(2x-3),则实数x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1.
(1)求证:f(x)在R上是增函数.
(2)若f(4)=5,解不等式.f(3m2-4)<3.
(3)若f(m2+m-5)<2的解集是m∈(-3,2),求f(6)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=
ax,(x>1)
(4-
a
2
)x+2,(x≤1)
是R上的单调函数,则实数a取值范围为(  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

同步练习册答案