分析 (1)由3x2-2x-1≥0,解得x范围即可得出函数的定义域;
(2)由$\left\{\begin{array}{l}{1-x≥0}\\{1+2x≥0}\end{array}\right.$,解得x范围即可得出函数的定义域;
(3)由9-x>0,解得xx范围即可得出函数的定义域.
解答 解:(1)由3x2-2x-1≥0,解得x≥1或$x≤-\frac{1}{3}$.
∴y=$\sqrt{3{x}^{2}-2x-1}$的定义域为{x|x≥1或$x≤-\frac{1}{3}$}.
(2)由$\left\{\begin{array}{l}{1-x≥0}\\{1+2x≥0}\end{array}\right.$,解得$-\frac{1}{2}≤x≤1$.
∴y=$\sqrt{1-x}$-$\sqrt{2x+1}$的定义域为{x|$-\frac{1}{2}≤x≤1$}.
(3)由9-x>0,解得x<9.
∴y=$\frac{7x}{\sqrt{9-x}}$的定义域为{x|x<9}.
点评 本题考查了函数的定义域的求法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(0,\frac{{\sqrt{3}}}{3})$ | B. | $(0,\frac{{\sqrt{3}}}{5})$ | C. | $(\frac{1}{2},\frac{{\sqrt{3}}}{2})$ | D. | $(\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{3})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com