精英家教网 > 高中数学 > 题目详情

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定合格”“不合格两个等级,同时对相应等级进行量化:合格5分,不合格0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:

等级

不合格

合格

得分

频数

6

24

1)由该题中频率分布直方图求测试成绩的平均数和中位数;

2)其他条件不变,在评定等级为合格的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;

3)用分层抽样的方法,从评定等级为合格不合格的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望

【答案】16465;(2;(3.

【解析】

1)根据频率分布直方图及其性质可求出,平均数,中位数;

2)设1次抽取的测试得分低于80为事件2次抽取的测试得分低于80为事件,由条件概率公式可求出;

3)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数为,“合格”的学生数为6;由题意可得5101520,利用“超几何分布”的计算公式即可得出概率,进而得出分布列与数学期望.

由题意知,样本容量为

1)平均数为

设中位数为,因为,所以,则

解得

2)由题意可知,分数在内的学生有24人,分数在内的学生有12人.设1次抽取的测试得分低于80为事件2次抽取的测试得分低于80为事件

,所以

3)在评定等级为合格不合格的学生中用分层抽样的方法抽取10人,则不合格的学生人数为合格的学生人数为

由题意可得的所有可能取值为0,5,10,15,20

所以的分布列为

0

5

10

15

20

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】)过点,离心率为,其左、右焦点分别为,且过焦点的直线交椭圆于.

(Ⅰ)求椭圆的方程;

(Ⅱ)若点的坐标为,设直线与直线的斜率分别为,试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的零点个数;

2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第行黑圈的个数为,则(1_______;(2______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是以为直径的圆上异于的一点,直角梯形所在平面与圆所在平面垂直,且.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:

年份

2014

2015

2016

2017

2018

年份代号

1

2

3

4

5

人均纯收入

5

4

7

8

10

1)求关于的线性回归方程;

2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2019年该地区农村居民家庭人均纯收入为多少?

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且

证明:直线与圆相切;

面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,函数在区间的最小值为,试比较的大小.

查看答案和解析>>

同步练习册答案