精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱 中,底面 是边长为2的等边三角形, 的中点.

(1)求证: 平面
(2)若四边形 是正方形,且 , 求直线 与平面 所成角的正弦值.

【答案】
(1)证明:连接AC1,设AC1与A1C交于点E ,连接 ,则 中点,

的中点,

平面 .


(2)解:取 的中点 ,连结 ,则

,故 ,∴

, 平面

中点 ,连结 ,过点作 ,则MN平面BCC1B1

连结

为直线 与平面 所成的角,

即直线 与平面所 成的角的正弦值为 .


【解析】(1)连接AC1交A1C于点E,连接DE,则DE为三角形ABC1的中位线,根据线面平行的判定定理即可证明;(2)取B1C1 的中点 H ,连结 A1H ,则根据线面垂直的判定定理易知A1H平面BCC1B1,取A1B1的中点M,过点M作MNA1H,则MN平面BCC1B1,因为A1DBM,所以即为直线A1D与平面BCC1B1所成角.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握空间角的异面直线所成的角(已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fk(x)=2x﹣(k﹣1)2﹣x(k∈Z),x∈R,g(x)=
(1)若f2(x)=2,求x的值.
(2)判断并证明函数y=g(x)的单调性;
(3)若函数y=f0(2x)+2mf2(x)在x∈[1,+∞)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP. (Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;
(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于 ?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2 (Ⅰ)如果函数g(x)的单调递减区间为(﹣ ,1),求函数g(x)的解析式;
(Ⅱ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A,B,C的对边分别为a,b,c,向量 ,且
(1)求角B的大小;
(2)若sinAsinC=sin2B,求a﹣c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,它的准线过双曲线 的右焦点,而且与x轴垂直.又抛物线与此双曲线交于点 ,求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二面角 为垂足, ,则异面直线 所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三条边长,则下列结论正确的是( ) ①对任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设一组数据51,54,m,57,53的平均数是54,则这组数据的标准差等于

查看答案和解析>>

同步练习册答案