精英家教网 > 高中数学 > 题目详情
11.函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到函数g(x)=2sinωx的图象,只需将函数f(x)的图象(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{5π}{12}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

分析 由题意可得函数的周期,可得ω值,由函数图象变换的规律可得.

解答 解:∵函数f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,
∴函数f(x)=2cos(ωx+$\frac{π}{3}$)的周期为π,∴$\frac{2π}{ω}$=π,解得ω=2,
∴f(x)=2cos(2x+$\frac{π}{3}$),g(x)=2sin2x=2cos(2x-$\frac{π}{2}$)=2cos[2(x-$\frac{5π}{12}$)+$\frac{π}{3}$)],
∴要得到函数g(x)=2sinωx的图象,只需将函数f(x)的图象向右平移$\frac{5π}{12}$个单位.
故选:C

点评 本题考查正余弦函数的图象,涉及周期性和图象变换,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知等式$sin(θ+\frac{π}{6})=1-{log_{\frac{1}{2}}}x$,则x的取值范围是(  )
A.[1,4]B.$[{\frac{1}{4},1}]$C.[2,4]D.$[{\frac{1}{4},4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)=\frac{1}{{\sqrt{3-x}}}$的定义域为(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点A(-1,0),B(1,0),动点P到A点的距离与到B点的距离之比为2,则点P的轨迹方程是(  )
A.${(x-\frac{5}{3})^2}+{y^2}=\frac{16}{9}$B.${(x+\frac{5}{3})^2}+{y^2}=\frac{16}{9}$C.${(x-\frac{5}{3})^2}+{y^2}=\frac{4}{3}$D.${(x+\frac{5}{3})^2}+{y^2}=\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲、乙两名同学从三门选修课中各选修两门,则两人所选课程中恰有一门相同的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x-1,则f($\frac{2}{3}$),f($\frac{3}{2}$),f($\frac{1}{3}$)的大小关系是(  )
A.f($\frac{2}{3}$)<f($\frac{3}{2}$)<f($\frac{1}{3}$)B.f($\frac{1}{3}$)<f($\frac{2}{3}$)<f($\frac{3}{2}$)C.f($\frac{1}{3}$)<f($\frac{3}{2}$)<f($\frac{2}{3}$)D.f($\frac{3}{2}$)<f($\frac{1}{3}$)<f($\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在的直线与圆x2+y2-4x-4y-1=0相交于MN,且|MN|=4,则光线l所在的直线方程为:x+2y-3=0或2x+y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$sinx≥\frac{{\sqrt{3}}}{2}$,则实数x的取值集合为{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(-3,5),B(2,15),直线l:3x-4y+4=0.
(1)求过A点与直线l平行的直线方程;
(2)若P点在直线l上,求|PA|+|PB|的最小值.

查看答案和解析>>

同步练习册答案