精英家教网 > 高中数学 > 题目详情

【题目】(1)已知命题:实数满足,命题:实数满足方程表示的焦点在轴上的椭圆,且的充分不必要条件,求实数的取值范围;

(2)设命题:关于的不等式的解集是:函数的定义域为.若是真命题,是假命题,求实数的取值范围.

【答案】(1);(2)

【解析】分析:(1)利用一元二次不等式的解法化简,利用椭圆的标准方程化简由包含关系列不等式求解即可;(2)化简命题可得化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于假以及真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.

详解(1)由得:即命题

表示焦点在轴上的椭圆,可得,解得,即命题.

因为的充分不必要条件,所以

解得:实数的取值范围是.

(2)解:命题为真命题时,实数的取值集合为

对于命题:函数的定义域为的充要条件是①恒成立.

时,不等式①为,显然不成立;

时,不等式①恒成立的条件是,解得

所以命题为真命题时,的取值集合为

由“是真命题,是假命题”,可知命题一真一假

假时,的取值范围是

真时,的取值范围是

综上,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数

(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x+2|﹣|2x﹣1|,M为不等式f(x)>0的解集.
(1)求M;
(2)求证:当x,y∈M时,|x+y+xy|<15.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=(

A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面平面分别是的中点.

(1)求证:平面平面

(2)若是线段上一点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着苹果6手机的上市,很多消费者觉得价格偏高,尤其是一部分大学生可望而不可及,因此“国美在线”推出无抵押分期付款购买方式,某分期店对最近100位采用分期付款的购买者进行统计,统计结果如下表所示:

付款方式

分1期

分2期

分3期

分4期

分5期

35

25

a

10

b

已知分3期付款的频率为0.15,并且店销售一部苹果6,顾客分1期付款,其利润为1千元;分2期或3期付款,其利润为1.5千元;分4期或5期付款,其利润为2千元,以频率作为概率.
(1)求事件A:“购买的3位顾客中,至多有1位分4期付款”的概率;
(2)用X表示销售一该手机的利润,求X的分布列及数学期望E(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的焦距为,离心率为,椭圆的右顶点为.

(1)求该椭圆的方程;

(2)过点作直线交椭圆于两个不同点,求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)解不等式

(2)若函数在区间上存在零点,求实数的取值范围;

(3)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案