精英家教网 > 高中数学 > 题目详情
11.已知x0是函数f(x)=ex-$\frac{1}{x-1}$的一个零点(其中e为自然对数的底数),若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

分析 判断函数f(x)的单调性,结合函数零点的定义,结合函数单调性的性质进行判断即可.

解答 解:函数f(x)在(1,+∞)上为增函数,
∵x0是函数f(x)=ex-$\frac{1}{x-1}$的一个零点,
∴f(x0)=e${\;}^{{x}_{0}}$-$\frac{1}{{x}_{0}-1}$=0,
则当x1∈(1,x0)时,f(x1)<f(x0)=0,
当x2∈(x0,+∞)时,f(x2)>f(x0)=0,
故选:B.

点评 本题主要考查函数单调性和函数零点的应用,利用函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$则目标函数z=$\frac{y+1}{x+1}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}各项均为正数,其前n项和Sn满足$4{S_n}={a_n}^2+2{a_n}+1$(n∈N+).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:${b_n}={a_n}•{2^{\frac{{{a_n}-1}}{2}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(x)=x2-4x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i是虚数单位,复数$\frac{5}{2-i}-i$=(  )
A.i-2B.2+iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(3,m)$,若$(2\overrightarrow a-\overrightarrow b)$与$\overrightarrow b$平行,则m的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.当x满足log${\;}_{\frac{1}{2}}$(3-x)≥-2时,求函数f(x)=4-x-21-x+1的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成45°角,则D1到平面ACB1的距离为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数y=f(x),当x=2时函数取最小值-1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在区间(1,4)上不单调,求实数k的取值范围.

查看答案和解析>>

同步练习册答案