精英家教网 > 高中数学 > 题目详情
3.某研究机构对高二文科学生的记忆力x和判断力y进行统计分析,得下表数据
X681012
Y2356
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出f'(x)=3x2-6x关于f'(x)=0的线性回归方程x1=0;
(3)试根据(2)求出的线性回归方程,预测记忆力为14的同学的判断力.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

分析 (1)根据表中数据画出散点图即可;
(2)计算回归系数,求出对应的线性回归方程;
(3)利用回归系数计算x=14时y的值.

解答 解:(1)画出上表数据的散点图,如图所示;…(3分)

(2)计算$\sum_{i=1}^{n}$xiyi═6×2+8×3+10×5+12×6=158,
$\overline{x}$=$\frac{1}{4}$×(6+8+10+12)=9,
$\overline{y}$=$\frac{1}{4}$×(2+3+5+6)=4,
$\sum_{i=1}^{n}$${{x}_{i}}^{2}$=62+82+102+122=344,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{158-4×9×4}{344-4{×9}^{2}}$=$\frac{14}{20}$=0.7,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=4-0.7×9=-2.3,
故线性回归方程为:y=0.7x-2.3.…(10分)
(3)当x=14时,y=0.7×14-2.3=7.5,
即预测记忆力为14的同学判断力为14.

点评 本题考查了线性回归方程的应用问题,也考查了散点图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.定义非零向量$\overrightarrow{OM}$=(a,b)的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量$\overrightarrow{OM}$=(a,b)称为函数f(x)=asinx+bcosx(x∈R)的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S
(1)设h(x)=$\sqrt{3}$cos(x+$\frac{π}{6}$)+3cos($\frac{π}{3}$-x)(x∈R),请问函数h(x)是否存在相伴向量$\overrightarrow{OM}$,若存在,求出与$\overrightarrow{OM}$共线的单位向量;若不存在,请说明理由.
(2)已知点M(a,b)满足:$\frac{b}{a}∈(0,\sqrt{3}$],向量$\overrightarrow{OM}$的“相伴函数”f(x)在x=x0处取得最大值,求tan2x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,M、N两点对应的复数分别为1-3i、-2+i,则|MN|=(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项积为Tn,即Tn=a1a2…an
(1)若数列{an}为首项为2016,公比为$q=-\frac{1}{2}$的等比数列,
①求Tn的表达式;②当n为何值时,Tn取得最大值;
(2)当n∈N*时,数列{an}都有an>0且${T_n}•{T_{n+1}}={({a_1}{a_n})^{\frac{n}{2}}}{({a_1}{a_{n+1}})^{\frac{n+1}{2}}}$成立,求证:{an}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥O-ABCD中,底面ABCD是四边长为$\sqrt{2}$的菱形,$∠ABC=\frac{π}{4},OA⊥$底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:平面OAC⊥平面OBD;
(2)求平面BMN与平面OAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系内,点P(x0,y0)到直线Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$运用类比的思想,我们可以解决下面问题:在空间内直角坐标系内,点 P(2,1,1)到平面3x+4y+12z+4=0的距离d=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用数学归纳法证明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”时,由n=k不等式成立,证明n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{{x}^{2}}{\sqrt{1-x}}$+lg(2x+1)的定义域为(-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥C-ABB1A1内接于圆柱OO1,且A1A,B1B都垂直于底面圆O,BC过底面圆心O,M,N分别是棱AA1,CB1的中点,MN⊥平面CBB1
(1)证明:MN∥平面ABC;
(2)求四棱锥C-ABB1A1与圆柱OO1的体积比.

查看答案和解析>>

同步练习册答案