精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=lg(x+1)-ln(1-x)的定义域为A,g(x)=$\sqrt{2x-1}$的定义域为B,则A∩B=(  )
A.(-∞,1)B.(-1,$\frac{1}{2}$]C.[$\frac{1}{2}$,1)D.(1,+∞)

分析 根据真数大于0,2次被开方数不小于0,求出集合A,B,结合集合交集的定义,可得答案.

解答 解:由$\left\{\begin{array}{l}x+1>0\\ 1-x>0\end{array}\right.$,得-1<x<1,
故A=(-1,1),
由2x-1≥0得:x≥$\frac{1}{2}$,
故B=[$\frac{1}{2}$,+∞),
∴A∩B=[$\frac{1}{2}$,1),
故选:C

点评 本题考查的知识点是函数的定义域,集合的交集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在${(1-{x^2}+\frac{2}{x})^7}$的展开式中的x3的系数为-910.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=${(\frac{1}{2})}^{lo{g}_{2}(x-1)}$.
(1)求f(x)的定义域;
(2)判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{ln(x+a)}{lnx}$.
(Ⅰ)当a=1时,求f(x)的单调区间,并比较log34,log45与log56的大小;
(Ⅱ)若实数a满足|a|≥1时,讨论f(x)极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.偶函数的定义域为R,x∈[0,+∞)时,f(x)=3x+2x2+x.
(1)判断f(x)的单调性(不用证明);
(2)求f(x)在(-∞,0)上的解析式;
(3)解不等式f(a2-3a+7)-f(4a-2a2-5)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在多面体ABC-A1B1C1中,AA1$\underset{∥}{=}$BB1,B1C1$\underset{∥}{=}$$\frac{1}{2}$BC,求证:AB1∥平面 A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两个码头相距99千米,某货船的船速v(千米/小时)与其载重量p(百吨)的关系式是:v=$\frac{160}{\frac{1}{2}p+3}$,设水流速是4千米/小时,今货船载一定质量的货物早晨8时从甲地运往乙地,然后再载相同质量的一批货物返回甲地,在乙地装卸货物的停留时间需2小时,问这货船最多载重多少吨货物才能在下午3点返回甲地?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知中心在原点,焦点在x轴上的双曲线的左、右焦点分别记为F1、F2,若P为双曲线的渐近线上一点,若|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{P{F}_{1}}$-$\overrightarrow{P{F}_{2}}$|,且|$\overrightarrow{P{F}_{2}}$|=a(a为实轴长),求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+x-16,求过点(2,-6)且与曲线y=f(x)相切的直线方程.

查看答案和解析>>

同步练习册答案