精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,正三棱锥的三条侧棱两两垂直,且长度均为2.分别是的中点,的中点,过作平面与侧棱或其延长线分别相交于,已知
(1)求证:⊥平面
(2)求二面角的大小。
(1)证明见解析。
(2)
(1)证明:依题设,的中位线,所以
∥平面,所以
的中点,所以,则
因为
所以⊥面,则
因此⊥面
(2)作,连。因为⊥平面

根据三垂线定理知,
就是二面角的平面角。
,则,则的中点,则
,由得,,解得
中,,则,
所以,故二面角
解法二:(1)以直线分别为轴,建立空间直角坐标系,


所以
所以
所以平面
,故:平面
(2)由已知

共线得:存在
 
同理:

是平面的一个法向量,
 
是平面的一个法量

所以二面角的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.
(I)证明:平面⊥平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)右图为一简单组合体,其底面ABCD为正方形,平面
,且,(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:平面
(3)若,求平面PBE与平面ABCD所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形和矩形所在的平面互相垂直,

是线段的中点.
(1)求证∥平面
(2)试在线段上确定一点,使得所成的角是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,E是PD的中点.
(1)求证:
(2)求证:;             
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,长方体ABCD中,AB=BC=4,E的中点,为下底面正方形的中心.求:(I)二面角CAB的正切值;
(II)异面直线AB所成角的正切值;
(III)三棱锥——ABE的体积.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体,的棱长为1,的中点,则下列五个命题:
①点到平面,的距离为
②直线与平面,所成的角等于
③空间四边形,在正方体六个面内形成六个射影,其面积的最小值是
所成的角
⑤二面角的大小为 
其中真命题是                     。(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为a的正方形ABCD所在平面外取一点P,使PA⊥平面ABCD,且PA=AB,在AC的延长线上取一点G。 
(1)若CG=AC,求异面直线PG与CD所成角的大小;
(2)若CG=AC,求点C到平面PBG的距离;

(3)当点G在AC的延长线上运动时(不含端点C),求二面角P-BG-C的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题







(     )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案