精英家教网 > 高中数学 > 题目详情
12.若函数$f(x)=-\frac{1}{2}{({x-2})^2}+alnx$在(1,+∞)上是减函数,则实数a的取值范围是(  )
A..[-1,+∞)B.(-∞,-1]C.(1,+∞)D..(-∞,1]

分析 求出函数的导函数,利用导函数的符号,得到a的不等式,然后求解实数a的取值范围.

解答 解:函数$f(x)=-\frac{1}{2}{({x-2})^2}+alnx$,x∈(1,+∞),
可得f′(x)=x-2+$\frac{a}{x}$,
函数$f(x)=-\frac{1}{2}{({x-2})^2}+alnx$在(1,+∞)上是减函数,
可得-x+2+$\frac{a}{x}$<0,在x∈(1,+∞)上恒成立,
即a<x2-2x在x∈(1,+∞)上恒成立,
函数g(x)=x2-2x的对称轴为:x=1,在x∈(1,+∞)上是增函数,函数的最小值为:g(1)=1.
可得a≤1.
实数a的取值范围是:(-∞,1].
故选:B.

点评 本题考查函数的导数的综合应用,函数恒成立,考查计算能力以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.用秦九韶算法求多项式f(x)=2+0.35x+1.8x2-3.66x3+6x4-5.2x5+x6,在x=-1.3的值时,令v0=a6,v1=v0x+a5,…,v6=v5x+a0,则v3的值是 (  )
A.-9.8205B.14.25C.-22.445D.30.9785

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin(270°+θ)=2cos(90°+θ),则cos2θ+sinθcosθ-sin2θ的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-bx+c\\;x≥0}\\{{e}^{x}\\;x<0}\end{array}\right.$,其中b=$\frac{2}{π}$${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,c为目标函数z=2x+4y在约束条件$\left\{\begin{array}{l}{y≥0}\\{x+y-1≤0}\\{x-y+2≥0}\end{array}\right.$,内的最大值,则f(x)<10的解集为(  )
A.(-∞,0)B.[0,5)C.(-∞,5)D.(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=log2($\sqrt{{x}^{2}+1}$+x)
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:函数f(x)在[0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直三棱柱ABC-A1B1C1的高为5,其中一个侧面的面积为10,另两个侧面面积之和为20.
(1)求该三棱柱的体积的最大值;
(2)当该三棱柱的体积取到最大值时,求三棱柱的表面积;
(3)当该三棱柱的体积取到最大值时,设O,O1分别为△ABC,△A1B1C1的重心,S在OO1上,点P为三棱锥S-ABC侧棱SA上的动点,若SA=4,求△PBC的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,输出的s为(  )
A.$\frac{2015}{2016}$B.$\frac{2014}{2015}$C.$\frac{2016}{2015}$D.$\frac{2017}{2016}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,记z=2x-y的最大值为m,则函数y=ax-1+m(a>0且a≠1)的图象所过定点坐标为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$f(x)=\left\{{\begin{array}{l}{\frac{1}{x},x>0}\\{{2^x},x≤0}\end{array}}\right.$,则f(f(-1))=2.

查看答案和解析>>

同步练习册答案