精英家教网 > 高中数学 > 题目详情
8.函数y=log3(x2-2x)<0的单调递减区间是(-∞,0).

分析 先求函数的定义域设u(x)=x2-2x则f(x)=log3u(x),因为对数函数的底数3>1,则对数函数为单调递增函数,要求f(x)函数的减区间只需求二次函数的减区间即可.

解答 解:由题意可得函数f(x)的定义域是{x|x>2或x<0},
令u(x)=x2-2x的减区间为(-∞,1),
∴函数f(x)的单调减区间为(-∞,0).
故答案:(-∞,0),

点评 此题考查学生求对数函数及二次函数增减性的能力,以及会求复合函数的增减性的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知点P在x+2y-1=0上,点Q在直线x+2y+3=0上,则线段PQ中点M的轨迹方程是x+2y+1=0;若点M的坐标(x,y)又满足不等式$\left\{\begin{array}{l}y≤\frac{x}{3}+2\\ y≤-x+2\end{array}\right.$,则$\sqrt{{x^2}+{y^2}}$的最小值是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{ln(-x+1),x≤0}\\{{x}^{2}+2x,x>0}\end{array}\right.$,若f(x)-(m+1)x≥0,则实数m的取值范围是(  )
A.(-∞,0]B.[-1,1]C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$\frac{1-{i}^{3}}{1-i}$(i是虚数单位)的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=x+$\frac{a}{x}$有如下性质:当a>0时,函数在(0,$\sqrt{a}$]单调递减,在[$\sqrt{a}$,+∞)单调递增.定义在(0,+∞)上的函数f(x)=|t(x+$\frac{4}{x}$)-5|,其中t>0.
(1)若函数f(x)分别在区间(0,2)和(2,+∞)上单调,求t的取值范围
(2)当t=1时,若方程f(x)-k=0有四个不相等的实数根x1,x2,x3,x4,求x1+x2+x3+x4的取值范围
(3)当t=1时,是否存在实数a,b且0<a<b≤2,使得f(x)在区间[a,b]上的取值范围是[ma,mb],若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知曲线f(x)=(x2-2x)lnx,则过f(x)上的一点(1,f(1))的切线方程为(  )
A.x+y+1=0B.x-y+1=0C.x+y-1=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\sqrt{m}$+$\frac{1}{\sqrt{m}}$=3,求下列各式的值
(1)m+m-1
(2)m2+m-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-a是奇函数
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)<m-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)是奇函数.若当x>0时,f(x)=x+lgx,则当x<0时,f(x)=x-lg(-x).

查看答案和解析>>

同步练习册答案