精英家教网 > 高中数学 > 题目详情
(2012•北海一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0
,则椭圆C的离心率为(  )
分析:设出Q的装备,结合向量条件及向量运算得出关于a,c的等式,从而求得椭圆的离心率.
解答:解:设Q(x0,0),由F2(c,0),A(0,b),则
F2A
=(-c,b),
AQ
=(x0,-b)
F2A
AQ
,∴-cx0-b2=0,∴x0=-
b2
c

2
F1F2
+
F2Q
=
0
,∴F1为F2Q中点.
-
b2
c
+c=-2c

∴b2=3c2=a2-c2
∴椭圆的离心率e=
1
2

故选A.
点评:本题考查椭圆的离心率,考查向量知识的运用,确定关于a,c的等式是解题轭关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北海一模)定义一种运算(a,b)*(c,d)=ad-bc,若函数f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(I)求数列{an}的通项;
(II)记bn=2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)如图,在120°二面角α-l-β内半径为1的圆O1与半径为2的圆O2分别在半平面α、β内,且与棱l切于同一点P,则以圆O1与圆O2为截面的球的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北海一模)i为虚数单位,复平面内表示复数z=
1+i
i
的点在(  )

查看答案和解析>>

同步练习册答案