精英家教网 > 高中数学 > 题目详情

【题目】将各项均为整数的数列排成如图所示的三角形数阵(第行有个数,同一行中,下标小的数排在左边).表示数阵中第行第1列的数.

已知数列为等比数列,且从第3行开始,各行均构成公差为的等差数列,.

(1)求数阵中第 列的数 (用 表示);

(2)求的值;

(3)2013是否在该数阵中,说明理由.

【答案】(1) (2) (3) 2013不再该数阵中

【解析】

(1)设的公比为.

依题意,为数阵中第5行第2列的数;为数阵中第6行第3列的数.

.

于是,.

.

(2)由1+2+…+62=1953,

1+2+…+63=2016,

2013-1953=60,

为数阵中第63行第60列的数.

从而,.

(3)假设2013为数阵中第行第列的数.

由第行中最小的数为、最大的数为,知

时,

时,.

于是,不等式①无正整数解.

从而,2013不再该数阵中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知,平面平面的中点,连接.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500/分钟和200元分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量垂直于向量,向量垂直于向量.

1)求向量的夹角;

2)设,且向量满足,求的最小值;

3)在(2)的条件下,随机选取一个向量,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线恒过定点,圆经过点和定点,且圆心在直线上.

(1)求圆的方程;

(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,下列结论中正确的是( )

A. B.

C. 是数列中的最大值 D. 数列无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)在上有两个零点,则的范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为直平行六面体.命题为正方体;命题的任意体对角线与其不相交的面对角线垂直.则命题是命题的( )条件 .

A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是 ( )

A. 函数的最小正周期为

B. 函数的图象关于直线对称

C. 函数在区间上单调递增

D. 函数的图像关于点对称

查看答案和解析>>

同步练习册答案