精英家教网 > 高中数学 > 题目详情
已知是不同的直线,是不同的平面,有下列命题:
①若,则
②若,则
③若,则
④若,则
其中真命题的个数是             (   )
A.B.C.D.
B
本题考查空间线面位置关系判定和性质。①若,则可能相交,②若,则可能相交,③若,则可能在平面内或,④正确。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点, (1)求证:BC∥平面AFE   (2)平面ABE⊥平面ACD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面的菱形,
侧面是边长为2的正三角形,且与底面垂直,的中点.
(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线是异面直线,直线分别与都相交,则直线的位置关系( )
A.可能是平行直线B.一定是异面直线C.可能是相交直线D.平行、相交、异面直线都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体棱长为1,的中点,的中点,的中点
(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由两个完全相同的正四棱锥组合而成的空间几何体的正视图、侧视图、俯视图相同如右图所示,且图中四边形是边长为1的正方形,则该几何体的体积为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)证明:平面平面ABCD;
(2)如果,且侧面的面积为8,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

   已知等腰直角三角形的斜边长为4cm,以斜边所在直线为旋转轴,两条直角边旋转一周得到的几何体的表面积为         

查看答案和解析>>

同步练习册答案