精英家教网 > 高中数学 > 题目详情

【题目】某校从学生会宣传部6名成员(其中男生4人,女生2)中,任选3人参加某省举办的我看中国改革开放三十年演讲比赛活动.

(1)设所选3人中女生人数为ξ,求ξ的分布列;

(2)求男生甲或女生乙被选中的概率;

(3)男生甲被选中为事件A女生乙被选中为事件B,求P(B)P(B|A)

【答案】1)见解析(23

【解析】试题分析:(1)根据题意可得ξ的所有可能取值为0,1,2,再求出ξ取每一个值的概率,可得ξ的分布列.(2)设“甲、乙都不被选中”为事件C,求得P(C)=,则所求概率为P()=1-P(C)可得结果.

(2)求出男生甲被选中女生乙被选中的概率和男生甲、女生乙都被选中的概率,即可得出结论.

试题解析:(1)ξ的所有可能取值为0,1,2,依题意得P(ξ=0)=P(ξ=1)=P(ξ=2)=.

ξ的分布列为

ξ

0

1

2

P

(2)设“甲、乙都不被选中”为事件C

P(C)=.

∴所求概率为P()=1-P(C)=1-.

(3)P(B)=P(B|A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放四十周年纪念币从2018125日起可以开始预约通过市场调查,得到该纪念章每1枚的市场价单位:元与上市时间单位:天的数据如下:

上市时间x

8

10

32

市场价y

82

60

82

根据上表数据,从下列函数:中选取一个恰当的函数刻画改革开放四十周年纪念章的市场价y与上市时间x的变化关系并说明理由

利用你选取的函数,求改革开放四十周年纪念章市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2 没有击中,用3,4,5,6,7,8,9 表示击中,以 4个随机数为一组, 代表射击4次的结果,经随机模拟产生了20组随机数:

7525,0293,7140,9857,0347,4373,8638,7815,1417,5550

0371,6233,2616,8045,6011,3661,9597,7424,7610,4281

根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是偶函数的导函数在区间上的唯一零点为2,并且当则使得成立的的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=30°a=4b=5,那么满足条件的△ABC(  )

A. 无解 B. 有一个解 C. 有两个解 D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记max{a,b}= ,设M=max{|x﹣y2+4|,|2y2﹣x+8|},若对一切实数x,y,M≥m2﹣2m都成立,则实数m的取值范围是

查看答案和解析>>

同步练习册答案