精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.
(1)若b-c=$\frac{1}{4}$a,2sinB=3sinC,求cosA的值;
(2)若b2-2b+c2=0,求$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范围.

分析 (1)利用正弦定理可求2b=3c,结合已知可得a=2c,b=$\frac{3c}{2}$,用余弦定理即可求值得解.
(2)如图所示,延长AO交外接圆于D.由于AD是⊙O的直径,可得∠ACD=∠ABD=90°,于是cos$∠CAD=\frac{AC}{AD}$,cos∠BAD=$\frac{AB}{AD}$.可得$\overrightarrow{AO}•\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{AD}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{2}$$\overrightarrow{AC}$2-$\frac{1}{2}$$\overrightarrow{AB}$2,.再利用c2=2b-b2,化为$\overrightarrow{AO}•\overrightarrow{BC}$=(b-$\frac{1}{2}$)2-$\frac{1}{4}$.由于c2=2b-b2>0,解得0<b<2.令f(b)=(b-$\frac{1}{2}$)2-$\frac{1}{4}$.利用二次函数的单调性即可得出.

解答 解:(1)∵2sinB=3sinC,∴2b=3c.
又∵b-c=$\frac{1}{4}$a,∴a=2c,b=$\frac{3c}{2}$,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{4}$.
(2)∵O为△ABC三边中垂线的交点,
∴O为三角形外接圆的圆心.如图所示,延长AO交外接圆于D,连接BD、CD,
∵AD是圆O的直径,
∴∠ACD=∠ABD=90°,cos$∠CAD=\frac{AC}{AD}$,cos∠BAD=$\frac{AB}{AD}$.
∵c2=2b-b2
∴$\overrightarrow{AO}•\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{AD}$•($\overrightarrow{AC}$-AB)=$\frac{1}{2}$$\overrightarrow{AD}$•$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AD}$•$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AC}$2-$\frac{1}{2}$$\overrightarrow{AB}$2
=$\frac{1}{2}$b2-${\frac{1}{2}}^{\;}$c2=$\frac{1}{2}$b2-$\frac{1}{2}$(2b-b2
=b2-b=(b-$\frac{1}{2}$)2-$\frac{1}{4}$.
∵c2=2b-b2>0,
∴0<b<2,
设f(b)=(b-$\frac{1}{2}$)2-$\frac{1}{4}$,又f(0)=0,f(2)=2,
∴$\overrightarrow{AO}•\overrightarrow{BC}$的取值范围是:[-$\frac{1}{4}$,2].

点评 本题考查了正弦定理,余弦定理,三角形的外接圆的性质、向量的运算法则、数量积运算、二次函数的单调性等基础知识与基本方法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ=(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则cos(π-α)的值是-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤3)=0.64,则P(ξ≤1)等于0.36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在△ABC中,向量$\overrightarrow{m}$=(-cosA,sinA),$\overrightarrow{n}$=(cosC,sinC),$\overrightarrow{m}$•$\overrightarrow{n}$=cos2B,若AC=6,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=-18,则AB+AC等于(  )
A.3$\sqrt{2}$B.3$\sqrt{6}$C.12D.6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x),x∈R,f(0)≠0,且满足f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$),则函数f(x)的奇偶性为(  )
A.是奇函数而不是偶函数B.是偶函数而不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某网站体育版足球栏目发起了“射手的连续进球与射手在场上的区域位置的关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
  有关系 无关系 不知道
 40岁以下 800 450 200
 40岁以上(含40岁) 100 150 300
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“有关系”态度的人中抽取45人,求n的值;
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体:
①从这10个人中选取3人,求至少一人在40岁以下的概率;
②从这10人中选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+3,求
(1)函数在点(0,3)处的切线方程;
(2)在区间[-2,2]上的最大值、最小值
(3)极大值、极小值.

查看答案和解析>>

同步练习册答案