精英家教网 > 高中数学 > 题目详情
3.不论a取何值,函数f(x)=ax-1-1(a>0且a≠1)的图象恒过定点为(1,0).

分析 根据指数函数y=ax的图象恒过定点(0,1),即可求出函数f(x)=ax-1-1的图象恒过定点的坐标.

解答 解:当x-1=0,即x=1时,
y=f(x)=a0-1=1-1=0,
∴函数f(x)=ax-1-1的图象恒过定点(1,0).
故答案为:(1,0).

点评 本题考查了指数函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.给出下列结论:
①在区间(0,+∞)上,函数y=x-1,$y={x^{\frac{1}{2}}}$,y=(x-1)2,y=x3中有三个是增函数;
②若logm3<logn3<0,则0<n<m<1;
③若函数f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
④已知函数$f(x)=\left\{\begin{array}{l}{3^{x-2}},x≤2\\{log_3}(x-1),x>2\end{array}\right.$则方程 $f(x)=\frac{1}{2}$有两个不相等的实数根,
其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x+\frac{π}{4})=sin(2x+\frac{π}{4})$
(Ⅰ)求f(x)解析式及其对称中心;
(Ⅱ)若$a∈[-\frac{π}{4},\frac{7π}{24}]$,求f(a)的值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由曲线y=$\sqrt{x}$、直线y=-x+2及x轴所围成的图形的面积为(  )
A.$\frac{10}{3}$B.4C.$\frac{7}{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在四面体ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow c$,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{EC}$,则$\overrightarrow{DE}$等于$\frac{1}{3}\overrightarrow{c}$-$\overrightarrow{a}$+$\frac{2}{3}\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,为了解函数g(x)=Asin(ωx)的图象,只要将y=f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为迎接2016年到来,某手工作坊的师傅要制作一种“新年礼品”,制作此礼品的次品率P与日产量x(件)满足P=$\left\{\begin{array}{l}{\frac{1}{20-x}}&{(0<x≤c)}\\{\frac{4}{5}}&{(x>c)}\end{array}\right.$(c为常数,且c∈N*,c<20),且每制作一件正品盈利4元,每出现一件次品亏损1元.
(Ⅰ)将日盈利额y(元)表示为日产量x(件)的函数;
(Ⅱ)为使日盈利额最大,日制作量应为多少件?(注:次品率=$\frac{次品数}{产品总数}$×100%)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若钝角△ABC的面积为10$\sqrt{3}$,且AB=5,AC=8,则BC等于$\sqrt{129}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ex-ax-b,a,b∈R.
(Ⅰ)若函数f(x)的图象在坐标原点处的切线是x轴,求f(x)的单调区间;
(Ⅱ)若f(x)≥0对x∈R恒成立,求ab的最大值.

查看答案和解析>>

同步练习册答案