精英家教网 > 高中数学 > 题目详情
6.若关于x的函数y=loga(ax+1)(a>0且a≠1)在[-3,-2]上单调递减,则实数a的取值范围为0<a<$\frac{1}{3}$.

分析 由a>0可知内函数为增函数,再由复合函数的单调性可知外函数为定义域内的减函数,最后由真数在[-3,-2]上的最小值大于0求出a的范围,取交集得答案.

解答 解:∵a>0,∴内函数t=ax+1在[-3,-2]上单调递增,
要使函数y=loga(ax+1)(a>0且a≠1)在[-3,-2]上单调递减,
则外函数y=logat为定义域内的减函数,
∴0<a<1,
又由t=ax+1在[-3,-2]上单调递增,则最小值为-3a=1,
由-3a+1>0,可得3a<1,即a<$\frac{1}{3}$.
综上,0$<a<\frac{1}{3}$.
故答案为:0<a<$\frac{1}{3}$.

点评 本题考查复合函数的单调性,该题解法灵活,体现了逆向思维原则,避免了繁杂的分类讨论,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16. 已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的$\frac{3}{16}$,求这两个圆锥中,体积较小者与体积较大者的高的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将列联表补充完整(不用写计算过程);
 喜爱不喜爱合计
男生 5 
女生10  
合计  50
并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,a1=2,Sn=$\frac{n+2}{3}{a}_{n}$(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列满足${b_n}={({-1})^n}•\frac{2n+1}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是(  )
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a-x}{x}$,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点P(1,0),且圆心为直线x+y-1=0与直线x-y+1=0交点,则该圆标准方程为x2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在区间(0,+∞)上的函数f(x)满足$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$,且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性,并证明;
(3)若f(2)=1,解不等式f(x2+3x)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的两顶点分别是B(1,1)和C(3,6),求第三个顶点A的轨迹方程,使|AB|=|BC|.

查看答案和解析>>

同步练习册答案