精英家教网 > 高中数学 > 题目详情

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

【答案】D

【解析】由条件知 依次成公比为的等比数列,三者之和为52升,根据等比数列的前N项和,即

故答案为D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=xsinx,x1、x2∈[﹣ ],且f(x1)>f(x2),则下列结论必成立的是(
A.x1>x2
B.x1+x2>0
C.x1<x2
D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的方程为:ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M、N,且|OM|=|ON|,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】西部大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上单调函数,且对x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,则方程f(x)﹣f′(x)=e的实数解所在的区间是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M:: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(1)求椭圆方程;
(2)当直线l的倾斜角为45°时,求线段CD的长;
(3)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求证: 互相垂直;
(2)若k ﹣k 的长度相等,求β﹣α的值(k为非零的常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角 所对的边分别为 ,已知.

(1)证明: .

(2)若的面积 为线段的中点, ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

同步练习册答案