精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左右焦点为为它的中心,为双曲线右支上的一点,的内切圆圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若双曲线的离心率为,则( )

A.B.C.D.关系不确定

【答案】A

【解析】

F1(﹣c,0)、F2(c,0),内切圆与x轴的切点是点A

∵|PF1|﹣|PF2|=2a,及圆的切线长定理知,

|AF1|﹣|AF2|=2a,设内切圆的圆心横坐标为x,

|(x+c)﹣(c﹣x)|=2a

∴x=a;

|OA|=a,

△PCF2中,由题意得,F2B⊥PIB,延长交F1F2于点C,利用△PCB≌△PF2B,可知PC=PF2

在三角形F1CF2中,有:

OB=CF1=(PF1﹣PC)=(PF1﹣PF2)=×2a=a.

∴|OB|=|OA|.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数满足,且, ,则函数的零点个数是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的图像在处的切线方程;

2)求函数的极大值;

3)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,椭圆的离心率正好是双曲线的离心率的倒数,椭圆的短轴长等于抛物线上一点到抛物线焦点的距离.

1)求椭圆的标准方程;

2)若直线与椭圆的两个交点为两点,已知圆轴的交点分别为(点轴的正半轴),且直线与圆相切,求的面积与的面积乘积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,分别是的中点.

1)设棱的中点为,证明:平面

2)若,且平面平面,求三棱柱的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)内角的对边分别为,若,且,试求角和角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD,,,将 沿折起,使平面平面,得到几何体,如图2所示.

1)求证:平面

2)求二面角D-AB-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具公司生产甲、乙两种书柜,制柜需先制白胚再油漆,每种柜的制造白胚工时数、油漆工时数的有关数据如下:

工艺要求

产品甲

产品乙

生产能力(工时/天)

制白胚工时数

6

12

120

油漆工时数

8

4

64

单位利润

20

24

则该公司合理安排这两种产品的生产,每天可获得的最大利润为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标.将指标按照分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的.

1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与村落有关:

甲村

乙村

总计

绝对贫困户

相对贫困户

总计

2)某干部决定在这两村贫困指标处于的贫困户中,随机选取户进行帮扶,用表示所选户中“亟待帮助户”的户数,求的分布列和数学期望.

附:,其中.

查看答案和解析>>

同步练习册答案