精英家教网 > 高中数学 > 题目详情

【题目】关于平面向量 ,有下列三个命题:
①若 = ,则 =
②若 =(1,k), =(﹣2,6), ,则k=﹣3.
③非零向量 满足| |=| |=| |,则 + 的夹角为60°.
其中真命题的序号为 . (写出所有真命题的序号)

【答案】②
【解析】解:①若 = ,则 )=0,此时 ⊥( ),而不一定 = ,①为假.
②由两向量 的充要条件,知1×6﹣k(﹣2)=0,解得k=﹣3,②为真.
③如图,在△ABC中,设
由| |=| |=| |,可知△ABC为等边三角形.
由平行四边形法则作出向量 + =
此时 + 成的角为30°.③为假.
综上,只有②是真命题.
答案:②

【考点精析】通过灵活运用命题的真假判断与应用,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y= 的定义域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有
①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等.
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大.
③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响.
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:
①x= 是函数y=2sin(2x﹣ )的一条对称轴;
②函数y=tanx的图象关于点( ,0)对称;
③正弦函数在第一象限为增函数
④函数y=cos(x﹣ )的一个单调增区间是(﹣
以上四个命题中正确的有(填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=sin2x+sin2x+3cos2x,求
(1)函数的最小值及此时的x的集合.
(2)函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周长为5,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x﹣my+3=0和圆C:x2+y2﹣6x+5=0
(1)当直线l与圆C相切时,求实数m的值;
(2)当直线l与圆C相交,且所得弦长为 时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明下列不等式:
(1)设a,b,c∈R* , 且满足条件a+b+c=1,证明: ≥9
(2)已知a≥0,证明:

查看答案和解析>>

同步练习册答案