精英家教网 > 高中数学 > 题目详情

已知函数,其中.

(1)当时判断的单调性;

(2)若在其定义域为增函数,求正实数的取值范围;

(3)设函数,当时,若,总有成立,求实数的取值范围.

 

【答案】

(1)增函数;(2);(3) .

【解析】

试题分析:(1) 本小题首先求得函数的定义域,再利用导数的公式和法则求得函数的导函数,发现其在恒大于零,于是可知函数上单调递增;(2) 本小题首先求得函数的定义域,再利用导数的公式和法则求得函数的导函数,根据函数在其定义域内为增函数,所以,然后转化为最值得求解;(3)本小题首先分析“,总有成立”等价于 “上的最大值不小于上的最大值”,于是问题就转化为求函数的最值.

试题解析:(1)的定义域为,且>0

所以f(x)为增函数.                           3分

(2)的定义域为

                      5分

因为在其定义域内为增函数,所以

,当且仅当时取等号,所以       9分

(3)当时,

时,;当时,

所以在上,                     11分

而“,总有成立”等价于

上的最大值不小于上的最大值”

上的最大值为

所以有

所以实数的取值范围是                     14分

考点:1.导数公式与法则;2.函数的单调性;3.等价转化.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案