精英家教网 > 高中数学 > 题目详情
(2013•郑州二模)过点M(2,-2p)作抛物线x2=2py(p>0)的两条切线,切点分别为A,B,若线段AB的中点纵坐标为6,则p的值是
1或2
1或2
分析:设过点M的抛物线的切线方程与抛物线的方程联立,利用方程的判别式等于0,再利用韦达定理,
结合线段AB中点的纵坐标为6,可求p的值.
解答:解:设过点M的抛物线的切线方程为:y+2p=k(x-2)与抛物线的方程x2=2py联立
消y得:x2-2pkx+4pk+4p2=0 ①.
根据题意可得,此方程的判别式等于0,∴pk2-4k-4p=0.
设切线的斜率分别为k1,k2,则k1+k2=
4
p

此时,方程①有唯一解为 x=-
-2pk
2×1
=pk,∴y=
x2
2p
=
pk2
2
=2(k+p).
设A(x1,y1),B(x2,y2),则12=y1+y2=2(k1+k2)+4p=
8
p
+4p,
∴p2-3p+2=0,解得 p=1或p=2,
故答案为 1或2.
点评:本题考查抛物线的切线,考查韦达定理的运用,考查中点坐标公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•郑州二模)设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组
f(m2-6m+23)+f(n2-8n)<0
m>3
,那么m2+n2的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)设z=x+y,其中x,y满足
x+2y≥0
x-y≤0
0≤y≤k
,当z的最大值为6时,k的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)若x∈(e-1,1),a=lnx,b=(
1
2
)lnx
,c=elnx,则a,b,c的大小关系为(  )

查看答案和解析>>

同步练习册答案