分析 (1)通过对x取值的分类讨论,去掉绝对值符号,即可求得不等式f(x)≤6的解集;
(2)利用等价转化思想,可得|2x+a|≤8,从而求出实数a的取值范围.
解答 解:(1)1°当$x≤-\frac{1}{2}$时,-2x-1-2x+3≤6⇒x≥-2;
2°当$-\frac{1}{2}<x<\frac{3}{2}$时,2x+1-2x+3≤6恒成立;
3°当$x≥\frac{3}{2}$时,4x-2≤6⇒x≤2
综上,解集为[-2,2];
(2)f(x)≥|2x+a|-4?|2x+a|≤8
即-8≤2x+a≤8$⇒\left\{\begin{array}{l}a-1≥-8\\ a+2≤8\end{array}\right.$⇒-7≤a≤6.
点评 本题考查绝对值不等式的解法,着重考查等价转化思想、分类讨论思想与综合运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | $\frac{6}{5}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 有最小值 $\frac{{11+2\sqrt{10}}}{3}$ | B. | 有最大值$\frac{{11+2\sqrt{10}}}{3}$ | ||
C. | 有最小值$\frac{{11-2\sqrt{10}}}{3}$ | D. | 有最大值$\frac{{11-2\sqrt{10}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com