精英家教网 > 高中数学 > 题目详情

【题目】中新网2016年12月19日电根据预报,今天开始雾霾范围将进一步扩大 日夜间至日,时段部分地区浓度值会超过微克/立方米. 而此轮雾最严的时段将有包括京津冀、山西、陕西、河南等个省市在内的地区被雾笼罩. 是指大气中直径小于或等于微米的顆粒物也称为可人肺粒物. 日均值在微克/立方米以下空气质克/立方米克/立方米之间空气质为二级微克/立方米以上空气质为超标.某地区在2016年12月19日至28日每天的监测数据的茎叶图如下:

(1)求出这些数据的中位数与极差;

(2)从所给的空气质不超标的天的数据中任意抽取天的数据,求这天中恰好有空气质为一级另一天空气质量为二级的概率.

【答案】(1)中位数为,极差为;(2) .

【解析】试题分析:(1)根据茎叶图可得中位数和极差.

(2)列出符合条件的所有情形共21种,其中符合条件的有12种,可求得概率.

试题解析:(1)中位数为,极差为.

(2)设空气质量为一级的三个监测数据分别记为,空气质量为二级的四个监测数据分别记为.所有的可能情形为:

,共种.

符合条件的有: ,共种.所以所求事件的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与曲线的公共点的横坐标之和为3,求的值;

(2)当时,对任意,使恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面

(1)在线段上确定一点,使得平面平面,并说明理由;

(2)若二面角的大小为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=1与函数y=3sin x(0≤x≤10)的图象所有交点的横坐标之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ) 图象上的任意两点,且角φ的终边经过点 ,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)当 时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PCE;
(2)求三棱锥C﹣BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆内,过的直线与椭圆相交于AB两点,且点是线段AB的中点,O为坐标原点.

(Ⅰ)是否存在实数t,使直线和直线OP的倾斜角互补?若存在,求出的值,若不存在,试说明理由;

(Ⅱ)求面积S的最大值.

查看答案和解析>>

同步练习册答案