精英家教网 > 高中数学 > 题目详情
设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.
【答案】分析:(I)利用条件化二元为一元,再解不等式,即可求x的取值范围;
(II)利用柯西不等式,即可求得u的最小值.
解答:解:(I)当z=1时,∵x+2y+3z=1,∴x+2y=-2,即
∴|x+y|+|y+1|>2可化简|x-2|+|x|>4,
∴x<0时,-x+2-x>4,∴x<-1;
0≤x≤2时,-x+2+x>4不成立;
x>2时,x-2+x>4,∴x>3
综上知,x<-1或x>3;
(II)∵()[(x+1)+2(y+2)+3(z+3)]≥(x+2y+3z)2
∴()(x+2y+3z+14)≥(x+2y+3z)2

∴u,当且仅当,又x+2y+3z=1,即x=,y=,z=时,umin=
点评:本题考查解不等式,考查函数的最值,正确运用柯西不等式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求u=
x2
x+1
+
2y2
y+2
+
3z2
z+3
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求数学公式的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州中学高三(上)第一次统练数学试卷(文科)(解析版) 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴一中分校高三(上)10月月考数学试卷(文科)(解析版) 题型:解答题

设x,y,z∈R且x+2y+3z=1
(I)当z=1,|x+y|+|y+1|>2时,求x的取值范围;
(II)当x>0,y>0,z>0时,求的最小值.

查看答案和解析>>

同步练习册答案