【题目】已知函数,则下列结论正确的有( )
A. 函数的最大值为2;
B. 函数的图象关于点对称;
C. 函数的图象左移个单位可得函数的图象;
D. 函数的图象与函数的图象关于轴对称;
E. 若实数使得方程在上恰好有三个实数解,,,则一定有.
科目:高中数学 来源: 题型:
【题目】三国时期吴国的数学家赵爽创制了一幅“勾股方圆图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股方圆图”中,四个全等的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和单调递减区间;
(2)将y=f(x)图象上所有的点向右平行移动个单位长度,得到y=g(x)的图象.若g(x)在(0,m)内是单调函数,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)求证直线和曲线相交于两点、,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:x∈[1,2], ﹣lnx﹣a≥0,命题q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.
设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;
问该企业选择哪家俱乐部比较合算,为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,函数的图象在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点, , ,证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com