精英家教网 > 高中数学 > 题目详情

【题目】已知定义在[﹣ ]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是(
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣
D.(﹣∞,﹣ ]∪( ,+∞)

【答案】B
【解析】解:令g(x)=sinx(cosx+1),
则g′(x)=(2cosx﹣1)(cosx+1),
当x∈[﹣ ,﹣ )时,g′(x)<0,g(x)为减函数,
当x∈(﹣ )时,g′(x)>0,g(x)为增函数,
当x∈( ]时,g′(x)<0,g(x)为减函数,
故g(x)=sinx(cosx+1)的图象如下图所示:

当x=± 时,g(x)=±1,此时a=
当x=0时,g′(x)=2,
若y=f(x)仅有一个零点,
则函数g(x)=sinx(cosx+1)的图象与y=ax的图象有且仅有一个交点,
由图可得:a∈(﹣∞, )∪[2,+∞),
故选:B
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从2013年开始,国家教育部要求高中阶段每学年都要组织学生进行学生体质健康测试,方案要求以学校为单位组织实施,某校对高一(1)班学生根据《国家学生体质健康标准》的测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图.所示,已知[90,100]分数段的人数为2.

(1)求[70,80)分数段的人数;

(2)现根据预备测试成绩从成绩在80分以上(含80分)的学生中任意选出2人代表班级参加学校举行的一项体育比赛,求这2人的成绩一个在[80,90)分数段、一个在[90,100]分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 均为等边三角形, .

(Ⅰ)求证: 平面

(Ⅱ)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=
(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;
(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1 , x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
①f(x)的最大值为3;
②将f(x)的图象向左平移 后所得的函数是偶函数;
③f(x)在区间[﹣ ]上单调递增;
④f(x)的图象关于直线x= 对称.
其中正确说法的序号是(
A.②③
B.①④
C.①②④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A、B、C的对边分别是a、b、c,其面积S=a2﹣(b﹣c)2 . 若a=2,则BC边上的中线长的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内的向量满足:,且的夹角为,又,则由满足条件的点所组成的图形面积是( )

A. 2 B. C. 1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

同步练习册答案