【题目】已知
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在上的最小值;
(Ⅲ)对一切的,恒成立,求实数的取值范围.
【答案】(Ⅰ)f(x)单调递减区间是(,+),f(x)单调递增区间是(0, )
(Ⅱ), (Ⅲ)a-2
【解析】试题分析:先求出导数的正负确定单调性求出单调区间, 由f(x)单调递减区间是(,+),f(x)单调递增区间是(0, )求出最值,,设,求出h(x)的最值 ,
试题解析:(Ⅰ)
(Ⅱ)(ⅰ)0<t<t+2<,t无解;
(ⅱ)0<t<<t+2,即0<t<时,;
(ⅲ),即时,,
(Ⅲ)由题意:2xlnx≤3x2+2ax-1+2即2xlnx≤3x2+2ax+1
∵x∈(0,+∞),∴a≥lnx-x-
设h(x)= lnx-x-x,在(0,+∞)上恒成立,
则
令,得(舍)
当时,;当时,
当时,取得最大值,=-2
.
科目:高中数学 来源: 题型:
【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:与模型②:作为产卵数和温度的回归方程来建立两个变量之间的关系.
温度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
26 | 692 | 80 | 3.57 |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中,
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: , .
(1)在答题卡中分别画出关于的散点图、关于的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,分别建立两个模型下建立关于的回归方程;并在两个模型下分别估计温度为时的产卵数.(与估计值均精确到小数点后两位)(参考数据: , , )
(3)若模型①、②的相关指数计算得分分别为, ,请根据相关指数判断哪个模型的拟合效果更好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点在坐标原点,焦点在轴上,过点的直线交抛物线于两点,线段的长度为8, 的中点到轴的距离为3.
(1)求抛物线的标准方程;
(2)设直线在轴上的截距为6,且抛物线交于两点,连结并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).
(1)求关于的函数关系式;
(2)若,求当下潜速度取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高二年级开设五门大学先修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理,商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:
其中选修数学学科的人数所占频率为0.6,为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;
(2)从选出的10名学生中随机抽取3人,记为选择线性代数人数与选择微积分人数差的绝对值,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com