A. | 90° | B. | 60° | C. | 45° | D. | 30° |
分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线DE与B1C所成角的大小.
解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则D(0,0,0),E(1,1,2),B1(2,2,2),C(0,2,0),
$\overrightarrow{DE}$=(1,1,2),$\overrightarrow{{B}_{1}C}$=(-2,0,-2),
设异面直线DE与B1C1所成角为θ,
则cosθ=$\frac{|\overrightarrow{DE}•\overrightarrow{{B}_{1}C}|}{|\overrightarrow{DE}|•|\overrightarrow{{B}_{1}C}|}$=$\frac{6}{\sqrt{6}•\sqrt{8}}$=$\frac{\sqrt{3}}{2}$,
∴θ=30°.
∴异面直线DE与B1C所成角的大小是30°.
故选:D.
点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{25}{4}$ | B. | $\frac{31}{4}$ | C. | $\frac{37-6\sqrt{3}}{4}$ | D. | $\frac{37-2\sqrt{33}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com