精英家教网 > 高中数学 > 题目详情

【题目】某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?

【答案】解:(Ⅰ)因为从装有10个球的箱子中任摸一球的结果共有 种,摸到红球的结果共有 种,
所以顾客参加一次抽奖获得100元现金奖励的概率是
(Ⅱ)设X表示顾客在三次抽奖中中奖的次数,
由于顾客每次抽奖的结果是相互独立的,则X﹣B(3,0.4),
所以E(X)=np=3×0.4=1.2.
由于顾客每中奖一次可获得100元现金奖励,因此该顾客在三次抽奖中可获得的奖励金额的
均值为1.2×100=120元.
由于顾客参加三次抽奖获得现金奖励的均值120元小于直接返现的150元,
所以商场经理希望顾客参加抽奖.
(Ⅲ)设顾客参加10次抽奖摸中红球的次数为Y.
由于顾客每次抽奖的结果是相互独立的,则Y﹣B(10,0.4).
于是,恰好k次中奖的概率为 ,k=0,1,…,10.
从而 ,k=1,2,…,10,
当k<4.4时,P(Y=k﹣1)<P(Y=k);
当k>4.4时,P(Y=k﹣1)>P(Y=k),
则P(Y=4)最大.
所以,最有可能获得的现金奖励为4×100=400元.
于是,顾客参加10次抽奖,最有可能获得400元的现金奖励
【解析】(Ⅰ)因为从装有10个球的箱子中任摸一球的结果共有 种,摸到红球的结果共有 种,由此能求出顾客参加一次抽奖获得100元现金奖励的概率.(Ⅱ)设X表示顾客在三次抽奖中中奖的次数,由于顾客每次抽奖的结果是相互独立的,则X﹣B(3,0.4),由此能求出商场经理希望顾客参加抽奖.(Ⅲ)设顾客参加10次抽奖摸中红球的次数为Y.由于顾客每次抽奖的结果是相互独立的,则Y﹣B(10,0.4).恰好k次中奖的概率为 ,k=0,1,…,10.由此能求出顾客参加10次抽奖,最有可能获得400元的现金奖励.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于(
A.6
B.7
C.8
D.7或8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则(
A.任意m∈A,都有f(m+3)>0
B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0
D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
7 8 7 9 5 4 9 10 7 4
9 5 7 8 7 6 8 6 7 7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,以频率作为概率,请依据上述数据估计,求甲在第11至
第13次射击中获得获得优秀的次数ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b是不相等的两个正数,且blna﹣alnb=a﹣b,给出下列结论:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正确结论的序号是(
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为(
A.
B.
C.
D.3π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在棱锥P﹣ABCD中,ABCD为矩形,PD⊥面ABCD,PB=2,PB与面PCD成45°角,PB与面ABD成30°角.
(1)在PB上是否存在一点E,使PC⊥面ADE,若存在确定E点位置,若不存在,请说明理由;
(2)当E为PB中点时,求二面角P﹣AE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知曲线 及曲线 ,C1上的点P1的横坐标为 .从C1上的点 作直线平行于x轴,交曲线C2于Qn点,再从C2上的点 作直线平行于y轴,交曲线C1于Pn+1点,点Pn(n=1,2,3…)的横坐标构成数列{an}.
(1)求曲线C1和曲线C2的交点坐标;
(2)试求an+1与an之间的关系;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax在(﹣1,0)上是增函数.
(1)求实数a的取值范围A;
(2)当a为A中最小值时,定义数列{an}满足:a1∈(﹣1,0),且2an+1=f(an),用数学归纳法证明an∈(﹣1,0),并判断an+1与an的大小.

查看答案和解析>>

同步练习册答案