精英家教网 > 高中数学 > 题目详情

【题目】已知函数,在区间上有最大值,最小值,设函数.

1)求的值;

2)不等式上恒成立,求实数的取值范围;

3)方程有三个不同的实数解,求实数的取值范围.

【答案】(1);(2);(3

【解析】

1)利用二次函数闭区间上的最值,通过a0的大小讨论,列出方程,即可求ab的值;

2)转化不等式f2x)﹣k2x0,为k在一侧,另一侧利用换元法通过二次函数在x[11]上恒成立,求出最值,即可求实数k的取值范围;

3)化简方程f|2x1|+k3)=0,转化为两个函数的图象的交点的个数,利用方程有三个不同的实数解,推出不等式然后求实数k的取值范围.

解:(1gx)=ax12+1+ba

a0,∴gx)在[23]上为增函数,

,可得

a1b0

2)方程f2x)﹣k2x0化为2x2k2x

k1

tkt22t+1

x[11],∴t,记φt)=t22t+1

φtminφ1)=0

k0

3)由f|2x1|+k3)=0

|2x1|2+3k)=0

|2x1|2﹣(2+3k|2x1|+1+2k)=0|2x1|0

|2x1|t,则方程化为t2﹣(2+3kt+1+2k)=0t0),

∵方程|2x1|2+3k)=0有三个不同的实数解,

∴由t|2x1|的图象(如图)知,

t2﹣(2+3kt+1+2k)=0有两个根t1t2,且0t11t20t11t21

φt)=t2﹣(2+3kt+1+2k),

 

k0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= .

(1)求函数f(x)的定义域和值域;

(2)设F(x)=m+f(x),求函数F(x)的最大值的表达式g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为;现记该选手在回答完个问题后的总得分为

1)求)的概率;

2)记,求的分布列,并计算数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理过程是演绎推理的是(  )

A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50

B. 由三角形的性质,推测空间四面体的性质

C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分

D. 在数列中,,可得,由此归纳出的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若x,求的值;

2)若x,试判断的奇偶性;

3)若函数在其定义域上是增函数,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是(  )

A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与轴交点的横坐标为.

(1)求

(2)证明:当时,曲线与直线只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一动点,过点轴,垂足为点,中点为

1)当在圆上运动时,求点的轨迹的方程

Ⅱ)过点的直线交于两点,当时,求线段的垂直平分线方程.

查看答案和解析>>

同步练习册答案